Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511277

RESUMO

Snakebite envenoming represents a major health problem in tropical and subtropical countries. Considering the elevated number of accidents and high morbidity and mortality rates, the World Health Organization reclassified this disease to category A of neglected diseases. In Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose pathophysiology is characterized by local and systemic inflammatory and degradative processes, triggering prothrombotic and hemorrhagic events, which lead to various complications, organ damage, tissue loss, amputations, and death. The activation of the multicellular blood system, hemostatic alterations, and activation of the inflammatory response are all well-documented in Bothrops envenomings. However, the interface between inflammation and coagulation is still a neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism, and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and, eventually, organic damage and necrosis. In this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing platelet and leukocyte activation, as well as the inflammatory production mediators and induction of innate immune responses, among other mechanisms that are altered by Bothrops venoms.


Assuntos
Bothrops , Mordeduras de Serpentes , Humanos , Animais , Mordeduras de Serpentes/complicações , Coagulação Sanguínea , Inflamação/complicações , Transdução de Sinais
2.
Protein Pept Lett ; 29(12): 1088-1098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177620

RESUMO

BACKGROUND: Fungal and parasitic diseases are global health problems, and the available treatments are becoming ineffective, mainly due to the emergence of resistant strains of pathogens. Furthermore, the drugs currently in use exhibit high toxicity and side effects. The scarcity of efficient treatments for fungal and parasitic diseases has motivated the search for new drug candidates, including antimicrobial peptides. The chemokine class RP1 peptide shows inhibitory activity against bacteria, viruses, cancer cells and parasites. In addition, the organometallic compound ferrocene showed antiparasitic activity. OBJECTIVE: Study aimed to assess the effect of conjugation of the RP1 peptide with ferrocene in terms of its structure, biological activity against fungi and parasites and toxicity. METHODS: Peptides and conjugates were synthesized using solid phase peptide synthesis (SPPS). The Fc-RP1 peptide showed antifungal and antimalarial activities with low toxicity in the U87 and HepG2 cell lines. RESULTS: The mechanism of action of these peptides, analyzed by flow cytometry in the fungus Cryptococcus neoformans, was through membrane permeabilization, with an emphasis on the Fc-RP1 peptide that presented the highest rate of PI-positive cell marking. CONCLUSION: In conclusion, ferrocene conjugated to antimicrobial peptide RP1 is an attractive biomolecule for drug discovery against fungal and parasitic diseases.


Assuntos
Antimaláricos , Metalocenos/farmacologia , Antifúngicos/farmacologia , Peptídeos Antimicrobianos
3.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443484

RESUMO

The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.


Assuntos
Venenos de Crotalídeos/química , Dimerização , Papaína/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , SARS-CoV-2/enzimologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Papaína/química , Papaína/metabolismo , Peptídeos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos
4.
PLoS One ; 15(3): e0228740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32214347

RESUMO

Parasitic diseases are a neglected and serious problem, especially in underdeveloped countries. Among the major parasitic diseases, Leishmaniasis figures as an urgent challenge due to its high incidence and severity. At the same time, the indiscriminate use of antibiotics by the population is increasing together with resistance to medicines. To address this problem, new antibiotic-like molecules that directly kill or inhibit the growth of microorganisms are necessary, where antimicrobial peptides (AMPs) can be of great help. In this work, the ferrocene molecule, one active compound with low levels of in vivo toxicity, was coupled to the N-terminus of the RP1 peptide (derived from the human chemokine CXCL4), aiming to evaluate how this change modifies the structure, biological activity, and toxicity of the peptide. The peptide and the conjugate were synthesized using the solid phase peptide synthesis (SPPS). Circular dichroism assays in PBS showed that the RP1 peptide and its conjugate had a typical spectrum for disordered structures. The Fc-RP1 presented anti-amastigote activity against Leishmania amazonensis (IC50 = 0.25 µmol L-1). In comparison with amphotericin B, a second-line drug approved for leishmaniasis treatment, (IC50 = 0.63 µmol L-1), Fc-RP1 was more active and showed a 2.5-fold higher selectivity index. The RP1 peptide presented a MIC of 4.3 µmol L-1 against S. agalactiae, whilst Fc-RP1 was four times more active (MIC = 0.96 µmol L-1), indicating that ferrocene improved the antimicrobial activity against Gram-positive bacteria. The Fc-RP1 peptide also decreased the minimum inhibitory concentration (MIC) in the assays against E. faecalis (MIC = 7.9 µmol L-1), E. coli (MIC = 3.9 µmol L-1) and S. aureus (MIC = 3.9 µmol L-1). The cytotoxicity of the compounds was tested against HaCaT cells, and no significant activity at the highest concentration tested (500 µg. mL-1) was observed, showing the high potential of this new compound as a possible new drug. The coupling of ferrocene also increased the vesicle permeabilization of the peptide, showing a direct relation between high peptide concentration and high carboxyfluorescein release, which indicates the action mechanism by pore formation on the vesicles. Several studies have shown that ferrocene destabilizes cell membranes through lipid peroxidation, leading to cell lysis. It is noteworthy that the Fc-RP1 peptide synthesized here is a prototype of a bioconjugation strategy, but it still is a compound with great biological activity against neglected and fish diseases.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Compostos Ferrosos/química , Metalocenos/química , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/toxicidade , Bactérias/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Permeabilidade
5.
Arch Oral Biol ; 103: 19-25, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31112936

RESUMO

OBJECTIVES: To evaluate the effect of analogues of cationic peptides on the viability and the expression of phenotypic and genotypic markers of dentin mineralization in MDPC-23 odontoblast-like cells. MATERIALS AND METHODS: Cells were exposed to serial dilutions of analogues of cationic peptides hBD-3-1CV and KR-12-a5 compared to peptide LL-37 and their viability was assessed by methyltetrazolium assay. Next, peptides (0.78-62.5 µg/mL) were applied on the MDPC-23 cells for evaluating the total protein (TP) production, alkaline phosphatase (ALP) activity and mineralized nodule deposition. Gene expression of mineralization markers (DSPP and DMP-1) was also determined by quantitative PCR. RESULTS: LL-37 and hBD-3-1CV treatment did not affect cellular viability at concentrations below 62.5 µg/mL. KR-12-a5 reduced cell viability above 31.25 µg/mL. TP production was similar for all groups compared with the control group, except by hBD-3-1CV (at 15.62 µg/mL). LL-37 (at 62.5 µg/mL) induced higher ALP activity than control and other experimental groups. LL-37 and hBD-3-1CV, at 62.5 µg/mL and KR-12-a5 at 31.25 µg/mL stimulated the highest deposition of mineralized nodule. Overall, no statistical differences were observed between the groups for DSPP-1 and DMP-1 expressions. CONCLUSIONS: LL-37 was the only peptide that induced both ALP activity and mineralized nodules deposition, without affecting cell viability. None of peptides tested induced the expression of DSPP or DMP-1, genes commonly involved in active dentin mineralization.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Dentinogênese , Proteínas da Matriz Extracelular , Odontoblastos , Fragmentos de Peptídeos , Fosfoproteínas , Sialoglicoproteínas , beta-Defensinas , Animais , Catelicidinas , Células Cultivadas , Dentina , Dentinogênese/genética , Proteínas da Matriz Extracelular/genética , Humanos , Camundongos , Peptídeos , Fosfoproteínas/genética , Sialoglicoproteínas/genética
6.
Protein Pept Lett ; 26(2): 98-107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30605048

RESUMO

Antimicrobial resistance is a global health problem with strong social and economic impacts. The development of new antimicrobial agents is considered an urgent challenge. In this regard, Antimicrobial Peptides (AMPs) appear to be novel candidates to overcome this problem. The mechanism of action of AMPs involves intracellular targets and membrane disruption. Although the exact mechanism of action of AMPs remains controversial, most AMPs act through membrane disruption of the target cell. Several strategies have been used to improve AMP activity, such as peptide dimerization. In this review, we focus on AMP dimerization, showing many examples of dimerized peptides and their effects on biological activity. Although more studies are necessary to elucidate the relationship between peptide properties and the dimerization effect on antimicrobial activity, dimerization constitutes a promising strategy to improve the effectiveness of AMPs.


Assuntos
Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Multimerização Proteica , Animais , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
7.
Artigo em Inglês | MEDLINE | ID: mdl-30498509

RESUMO

BACKGROUND: Snake venom phospholipases A2 (PLA2s) have been reported to induce myotoxic, neurotoxic, hemolytic, edematogenic, cytotoxic and proinflammatory effects. This work aimed at the isolation and functional characterization of a PLA2 isolated from Bothrops jararaca venom, named BJ-PLA2-I. METHODS AND RESULTS: For its purification, three consecutive chromatographic steps were used (Sephacryl S-200, Source 15Q and Mono Q 5/50 GL). BJ-PLA2-I showed acidic characteristics, with pI~ 4.4 and molecular mass of 14.2 kDa. Sequencing resulted in 60 amino acid residues that showed high similarity to other Bothrops PLA2s, including 100% identity with BJ-PLA2, an Asp49 PLA2 previously isolated from B. jararaca venom. Being an Asp49 PLA2, BJ-PLA2-I showed high catalytic activity, and also inhibitory effects on the ADP-induced platelet aggregation. Its inflammatory characterization showed that BJ-PLA2-I was able to promote leukocyte migration in mice at different concentrations (5, 10 and 20 µg/mL) and also at different response periods (2, 4 and 24 h), mainly by stimulating neutrophil infiltration. Furthermore, increased levels of total proteins, IL-6, IL-1ß and PGE2 were observed in the inflammatory exudate induced by BJ-PLA2-I, while nitric oxide, TNF-α, IL-10 and LTB4 levels were not significantly altered. This toxin was also evaluated for its cytotoxic potential on normal (PBMC) and tumor cell lines (HL-60 and HepG2). Overall, BJ-PLA2-I (2.5-160 µg/mL) promoted low cytotoxicity, with cell viabilities mostly varying between 70 and 80% and significant values obtained for HL-60 and PBMC only at the highest concentrations of the toxin evaluated. CONCLUSIONS: BJ-PLA2-I was characterized as an acidic Asp49 PLA2 that induces acute local inflammation and low cytotoxicity. These results should contribute to elucidate the action mechanisms of snake venom PLA2s.

8.
Protein Pept Lett ; 25(10): 943-952, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289061

RESUMO

BACKGROUND: In last decades, snake venoms have aroused great interest of the medicine due to the pathophysiological effects caused by their toxins. These include the phospholipases A2, low molecular weight proteins capable of causing haemorrhagic, myotoxic, inflammatory and neurotoxic effects after an ophidian accident. The present work describes the isolation and biochemical characterization of a new PLA2 isolated from the B. alternatus snake venom, which was named BaltPLA2. METHOD: The rapid and efficient purification of this toxin was performed using only two chromatography steps (anion exchange and hydrophobic chromatography). RESULTS: BaltPLA2 is an acidic protein (pI 4.4) with an apparent molecular mass of 17000 (SDSPAGE) and 14074.74 Da (MALDI TOF/TOF). Analysis of fragments ion by MS / MS showed the following internal amino acid sequence SGVIICGEGTPCEK, which did not exhibit homology with other PLA2 from the same venom. BaltPLA2 is a catalytically active, which displayed an anticoagulant action, inhibition of platelet aggregation induced by epinephrine (~ 80%) and ADP (24%). BaltPLA2 also was able to induce myonecrosis and the release of cytokines (IL-10, IL-12 and TNF- α) in macrophages culture. CONCLUSION: The results presented in this work greatly contribute to a better understanding of the mechanism of enzymatic and pharmacological actions of PLA2s from snake venoms and they may contribute to its application in medical research.


Assuntos
Bothrops , Fosfolipases A2/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Venenos de Serpentes/enzimologia , Sequência de Aminoácidos , Animais , Humanos , Fosfolipases A2/química
9.
Peptides ; 104: 24-34, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29684590

RESUMO

Venom small peptides that target neurotrophin receptors might be beneficial in neurodegeneration, including Parkinsons disease (PD). Their small size, ease of synthesis, structural stability and target selectivity make them important tools to overcome the limitations of endogenous neurotrophins as therapeutic agents. Additionally, they might be optimized to improve resistance to enzymatic degradation, bioavailability, potency and, mainly, lipophilicity, important to cross the blood brain barrier (BBB). Here, we evaluated the neuroprotective effects and mechanisms of the synthetic snake-venom-based peptide p-BTX-I (Glu-Val-Trp) in PC12 cells treated with MPP+ (1-methyl-4-phenylpyridinium), a dopaminergic neurotoxin that induces Parkinsonism in vivo. The peptide p-BTX-I induced neuritogenesis, which was reduced by (i) k252a, antagonist of the NGF-selective receptor, trkA (tropomyosin receptor kinase A); (ii) LY294002, inhibitor of the PI3 K/AKT pathway and (iii) U0126, inhibitor of the MAPK-ERK pathway. Besides that, p-BTX-I also increased the expression of GAP-43 and synapsin, which are molecular markers of axonal growth and synaptic communication. In addition, the peptide increased the viability and differentiation of cells exposed to MPP+, known to inhibit neuritogenesis. Altogether, our findings suggest that the synthetic peptide p-BTX-I protects PC12 cells from MPP+ toxicity by a mechanism that mimics the neurotrophic action of NGF. Therefore, the molecular structure of p-BTX-I might be relevant in the development of drugs aimed at restoring the axonal connectivity in neurodegenerative processes.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Oligopeptídeos/síntese química , Oligopeptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Venenos de Serpentes/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Proteína GAP-43/metabolismo , Fator de Crescimento Neural/metabolismo , Oligopeptídeos/química , Células PC12 , Ratos , Receptor trkB/metabolismo , Sinapsinas/metabolismo
10.
J. venom. anim. toxins incl. trop. dis ; 24: 33, 2018. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-976022

RESUMO

Snake venom phospholipases A2 (PLA2s) have been reported to induce myotoxic, neurotoxic, hemolytic, edematogenic, cytotoxic and proinflammatory effects. This work aimed at the isolation and functional characterization of a PLA2 isolated from Bothrops jararaca venom, named BJ-PLA2-I. Methods and Results: For its purification, three consecutive chromatographic steps were used (Sephacryl S-200, Source 15Q and Mono Q 5/50 GL). BJ-PLA2-I showed acidic characteristics, with pI~4.4 and molecular mass of 14. 2 kDa. Sequencing resulted in 60 amino acid residues that showed high similarity to other Bothrops PLA2s, including 100% identity with BJ-PLA2, an Asp49 PLA2 previously isolated from B. jararaca venom. Being an Asp49 PLA2, BJ-PLA2-I showed high catalytic activity, and also inhibitory effects on the ADP-induced platelet aggregation. Its inflammatory characterization showed that BJ-PLA2-I was able to promote leukocyte migration in mice at different concentrations (5, 10 and 20 µg/mL) and also at different response periods (2, 4 and 24 h), mainly by stimulating neutrophil infiltration. Furthermore, increased levels of total proteins, IL-6, IL-1 ß and PGE2 were observed in the inflammatory exudate induced by BJ-PLA2-I, while nitric oxide, TNF-α, IL-10 and LTB4 levels were not significantly altered. This toxin was also evaluated for its cytotoxic potential on normal (PBMC) and tumor cell lines (HL-60 and HepG2). Overall, BJ-PLA2-I (2.5-160 µg/mL) promoted low cytotoxicity, with cell viabilities mostly varying between 70 and 80% and significant values obtained for HL-60 and PBMC only at the highest concentrations of the toxin evaluated. Conclusions: BJ-PLA2-I was characterized as an acidic Asp49 PLA2 that induces acute local inflammation and low cytotoxicity. These results should contribute to elucidate the action mechanisms of snake venom PLA2s.(AU)


Assuntos
Animais , Bothrops , Venenos de Crotalídeos/síntese química , Citotoxinas , Citotoxicidade Imunológica , Fosfolipases A2/síntese química
11.
Molecules ; 22(11)2017 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-29113051

RESUMO

Antimicrobial peptides can be used systemically, however, their susceptibility to proteases is a major obstacle in peptide-based therapeutic development. In the present study, the serum stability of p-BthTX-I (KKYRYHLKPFCKK) and (p-BthTX-I)2, a p-BthTX-I disulfide-linked dimer, were analyzed by mass spectrometry and analytical high-performance liquid chromatography (HPLC). Antimicrobial activities were assessed by determining their minimum inhibitory concentrations (MIC) using cation-adjusted Mueller-Hinton broth. Furthermore, biofilm eradication and time-kill kinetics were performed. Our results showed that p-BthTX-I and (p-BthTX-I)2 were completely degraded after 25 min. Mass spectrometry showed that the primary degradation product was a peptide that had lost four lysine residues on its C-terminus region (des-Lys12/Lys13-(p-BthTX-I)2), which was stable after 24 h of incubation. The antibacterial activities of the peptides p-BthTX-I, (p-BthTX-I)2, and des-Lys12/Lys13-(p-BthTX-I)2 were evaluated against a variety of bacteria, including multidrug-resistant strains. Des-Lys12/Lys13-(p-BthTX-I)2 and (p-BthTX-I)2 degraded Staphylococcus epidermidis biofilms. Additionally, both the peptides exhibited bactericidal activities against planktonic S. epidermidis in time-kill assays. The emergence of bacterial resistance to a variety of antibiotics used in clinics is the ultimate challenge for microbial infection control. Therefore, our results demonstrated that both peptides analyzed and the product of proteolysis obtained from (p-BthTX-I)2 are promising prototypes as novel drugs to treat multidrug-resistant bacterial infections.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos , Masculino
12.
Artigo em Inglês | MEDLINE | ID: mdl-28344595

RESUMO

It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.

13.
Int J Biol Macromol ; 98: 436-446, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28163123

RESUMO

Resistance of snakes and some other animals to snake envenomation has been attributed to soluble factors present in their tissues. Here we report the isolation of a novel metalloprotease inhibitor from Bothrops alternatus snake serum (named BaltMPI) with high purity, using a four-step chromatographic method. BaltMPI has molecular weights of 60.5 and 42.4kDa, as determined by SDS-PAGE and mass spectrometry, respectively, and pI=5.27. The first 60 amino acids from the N-terminal region of BaltMPI, determined by Edman's degradation, showed high homology (97%) with the snake venom metalloprotease inhibitor (SVMPI) BJ46a and other SVMPIs (78-82%). The chromatographic fractions and purified BaltMPI exhibited anti-hemorrhagic activity against Batroxase and BjussuMP-I. BaltMPI was stable over wide ranges of pH (1, 5, 8, and 9) and temperature (-80, -20, 4, 60, and 100°C), and suppressed the fibrinogenolytic, fibrinolytic, and azocaseinolytic activities of Batroxase. BaltMPI specifically inhibited the activity of metalloproteases, without affecting the activity of serine proteases. Together, our results suggest that BaltMPI and other SVMPIs are promising molecules for the treatment of snake envenomation, in particular that caused by Bothrops sp.


Assuntos
Bothrops/sangue , Metaloendopeptidases/antagonistas & inibidores , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Animais , Caseínas/metabolismo , Fibrina/metabolismo , Fibrinogênio/metabolismo , Hemorragia/tratamento farmacológico , Metaloendopeptidases/metabolismo , Camundongos , Inibidores de Proteases/sangue , Inibidores de Proteases/química , Proteólise/efeitos dos fármacos
14.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484694

RESUMO

Abstract It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.

15.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-954817

RESUMO

It is of popular and scientific knowledge that toxins from snake venom (among them the PLA2 and myotoxins) are neutralized by various compounds, such as antibodies and proteins purified from animal blood. Venomous and nonvenomous snakes have PLA2 inhibitory proteins, called PLIs, in their blood serum. One hypothesis that could explain the presence of these PLIs in the serum of venomous snakes would be self-protection against the enzymes of their own venom, which eventually could reach the circulatory system. However, the presence of PLIs in non-venomous snakes suggests that their physiological role might not be restricted to protection against PLA2 toxins, but could be extended to other functions, as in the innate immune system and local regulation of PLA2s. The present study aimed to review the currently available literature on PLA2 and myotoxin alpha inhibitors present in snake plasma, thus helping to improve the research on these molecules. Furthermore, this review includes current information regarding the mechanism of action of these inhibitors in an attempt to better understand their application, and proposes the use of these molecules as new models in snakebite therapy. These molecules may help in the neutralization of different types of phospholipases A2 and myotoxins, complementing the conventional serum therapy.(AU)


Assuntos
Animais , Venenos de Serpentes , Fosfolipases A2 , Inibidores de Fosfolipase A2 , Anticorpos
16.
Protein Pept Lett ; 23(8): 738-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165408

RESUMO

Due to the growing problem of antibiotic-resistant microorganisms, the development of novel antimicrobial agents is a very important challenge. Dimerization of cationic antimicrobial peptides (cAMPs) is a potential strategy for enhancing antimicrobial activity. Here, we studied the effects of magainin 2 (MG2) dimerization on its structure and biological activity. Lysine and glutamic acid were used to synthesize the C- and N-terminal dimers of MG2, respectively, in order to evaluate the impact of linker position used to obtain the dimers. Both MG2 and its dimeric versions showed a random coil structure in aqueous solution. However, in the presence of a structure-inducing solvent or a membrane mimetic, all peptides acquired helical structure. N-terminal dimerization did not affect the biological activity of the peptide. On the other hand, the C-terminal dimer, (MG2)2K, showed antimicrobial activity 8-16 times higher than that of MG2, and the time required to kill Escherichia coli was lower. The enhanced antimicrobial activity was related to membrane permeabilization. (MG2)2K was also more active against multidrug-resistant bacteria of clinical origin. Overall, the results presented here demonstrate that C-terminal lysine-linked dimerization improve the activity of MG2, and (MG2)2K can be considered as a potential antimicrobial agent.


Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Magaininas/química , Peptídeos/síntese química , Peptídeos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Dicroísmo Circular , Dimerização , Escherichia coli/efeitos dos fármacos , Lisina/química , Magaininas/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Relação Estrutura-Atividade , Fatores de Tempo
17.
Biopolymers ; 106(3): 357-67, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26832983

RESUMO

The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016.


Assuntos
Técnicas Biossensoriais/métodos , Compostos Ferrosos/química , Peptídeos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Cisteína/química , Espectroscopia Dielétrica , Eletrodos , Ouro/química , Metalocenos , Oxirredução
18.
Toxicon ; 124: 53-62, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28327300

RESUMO

Phospholipase A2 inhibitors (PLIs) are important targets in the search and development of new drugs. This study aimed at evaluating the potential of an alpha-type phospholipase A2 inhibitor from Bothrops alternatus (Rhinocerophis alternatus) snake in its recombinant form (rBaltMIP) to complement the conventional antivenom therapy. Biochemical experiments showed that rBaltMIP presented pI 5.8 and molecular masses of ∼21 kDa by SDS-PAGE and 19.57 kDa by MALDI/TOF MS. After tryptic peptides sequencing, the results were compared with other PLIs available in databases, showing 100% identity between rBaltMIP and its native inhibitor BaltMIP and from 92% to 96% identity with other inhibitors. Myotoxic activities of BthTX-I and BthTX-II toxins were measured via plasma CK levels, showing myotoxic effective concentrations (EC50) of 0.1256 µg/µL and 0.6183 µg/µL, respectively. rBaltMIP neutralized the myotoxicity caused by these two toxins up to 65%, without promoting primary antibody response against itself. Nevertheless, this recombinant PLI was immunogenic when standard immunization protocol with Freud's adjuvant was used. In paw edema assays, EC50 of 0.02581 µg/µL and 0.02810 µg/µL, respectively, were observed with edema reductions of up to 40% by rBaltMIP, suggesting its use as an additional antivenom. In addition, myotoxicity neutralization experiments with the myotoxin BthTX-I showed that rBaltMIP was more effective in inhibiting muscle damage than the conventional antivenom. Thus, considering the severity of envenomations due to Bothrops alternatus (Rhinocerophis alternatus) and the low neutralization of their local effects (such as myotoxicity) by the current antivenoms, rBaltMIP is a promising molecule for the development of novel therapeutic strategies for clinical applications.


Assuntos
Antivenenos/uso terapêutico , Bothrops , Inibidores de Fosfolipase A2/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Animais , Antivenenos/química , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Fosfolipase A2/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Proteínas de Répteis , Mordeduras de Serpentes/patologia , Testes de Toxicidade
19.
Toxicon ; 103: 160-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26160494

RESUMO

Infectious diseases are among the leading global causes of death, increasing the search for novel antibacterial agents. Among these, biologically active peptides are an excellent research tool. Using solid-phase peptide synthesis (SPPS), this work aimed to synthesize the peptide derived from the C-terminal region of Bothropstoxin-I (BthTX-I) (p-BthTX-I, sequence: KKYRYHLKPFCKK), and its disulfide-linked dimeric form, obtained via air oxidation (p-BthTX-I)2. Two other peptides were synthesized to evaluate the dimerization effect on antimicrobial activity. In both sequences, the cysteine (Cys) residue was replaced by the serine (Ser) residue, differing, however, in their C-terminus position. The antimicrobial activity of the peptides against gram-negative (Escherichia (E.) coli) and gram-positive (Staphylococcus (S.) aureus) bacteria and yeast (Candida (C.) albicans) was evaluated. Interestingly, only peptides containing the Cys residue showed antimicrobial activity, suggesting the importance of Cys residue and its dimerization for the observed activity. Apparently, p-BthTX-I and (p-BthTX-I)2 did not promote lysis or form pores and were not able to interact with membranes. Furthermore, they neither showed antifungal activity against C. albicans nor toxicity against erythrocytes, epithelial cells, or macrophages, indicating a potential specificity against prokaryotic cells.


Assuntos
Antibacterianos/farmacologia , Venenos de Crotalídeos/farmacologia , Peptídeos/farmacologia , Antibacterianos/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Dicroísmo Circular , Venenos de Crotalídeos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Hemólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/química , Conformação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
20.
Biosens Bioelectron ; 68: 281-287, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25590969

RESUMO

Early detection assays play a key role in the successful treatment of most diseases. Redox capacitive biosensors were recently introduced as a potential electroanalytical assay platform for point-of-care applications but alternative surfaces (besides a mixed layer containing ferrocene and antibody receptive component) for recruiting important clinical biomarkers are still needed. Aiming to develop alternative receptive surfaces for this novel electrochemical biosensing platform, we synthesized a ferrocene redox-tagged peptide capable of self-assembly into metallic interfaces, a potentially useful biological surface functionalization for bedside diagnostic assays. As a proof of concept we used C-reactive protein (CRP), as a model biomarker, and compared the obtained results to those of previously reported capacitive assays. The redox-tagged peptide approach shows a limit of detection of 0.8 nmol L(-1) (same as 94 ng mL(-1)) and a linear range (R(2)∼98%) with the logarithm of the concentration of the analyte comprising 0.5-10.0 nmol L(-1), within a clinical relevant range for CRP.


Assuntos
Técnicas Biossensoriais , Proteína C-Reativa/isolamento & purificação , Proteína C-Reativa/química , Humanos , Limite de Detecção , Oligopeptídeos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...